Critical rotation of a harmonically trapped Bose gas.
نویسندگان
چکیده
We study experimentally and theoretically a cold trapped Bose gas under critical rotation, i.e., with a rotation frequency close to the frequency of the radial confinement. We identify two regimes: the regime of explosion where the cloud expands to infinity in one direction, and the regime where the condensate spirals out of the trap as a rigid body. The former is realized for a dilute cloud, and the latter for a condensate with the interparticle interaction exceeding a critical value. This constitutes a novel system in which repulsive interactions help in maintaining particles together.
منابع مشابه
Effects of interactions on the critical temperature of a trapped Bose gas.
We perform high-precision measurements of the condensation temperature of a harmonically trapped atomic Bose gas with widely tunable interactions. For weak interactions we observe a negative shift of the critical temperature in excellent agreement with mean-field theory. However for sufficiently strong interactions we clearly observe an additional positive shift, characteristic of beyond-mean-f...
متن کاملRotational States of Bose gases with attractive interactions in anharmonic traps.
A rotated and harmonically trapped Bose gas with attractive interactions is expected to either remain stationary or escape from the trap. Here we report that, on the contrary, in an anharmonic trapping potential the Bose gas with attractive interactions responds to external rotation very differently, namely, through center-of-mass motion or by formation of vortices.
متن کاملWeakly interacting Bose-Einstein condensates under rotation: mean-field versus exact solutions.
We consider a weakly interacting, harmonically trapped Bose-Einstein condensed gas under rotation and investigate the connection between the energies obtained from mean-field calculations and from exact diagonalizations in a subspace of degenerate states. From the latter we derive an approximation scheme valid in the thermodynamic limit of many particles. Mean-field results are shown to emerge ...
متن کاملRapidly rotating Bose-Einstein condensates in and near the lowest Landau level.
We create rapidly rotating Bose-Einstein condensates in the lowest Landau level by spinning up the condensates to rotation rates Omega > 99% of the centrifugal limit for a harmonically trapped gas, while reducing the number of atoms. As a consequence, the chemical potential drops below the cyclotron energy 2 variant Planck's over 2pi Omega. While in this mean-field quantum-Hall regime we still ...
متن کاملar X iv : c on d - m at / 0 70 32 00 v 1 8 M ar 2 00 7 Critical Point of an Interacting Two - Dimensional Atomic Bose Gas
We have measured the critical atom number in a harmonically trapped two-dimensional (2D) Bose gas of rubidium atoms at different temperatures. We found this number to be about five times higher than predicted by the semi-classical theory of Bose-Einstein condensation (BEC) in the ideal gas. This demonstrates that the conventional BEC picture is inapplicable in an interacting 2D atomic gas, in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 88 25 Pt 1 شماره
صفحات -
تاریخ انتشار 2002